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ABSTRACT

A program to substitute iridium-coated rhenium for silicide-coated niobium in

thrust chamber fabrications is reviewed. The life limiting phenomena in each of

these material systems is also reviewed. Coating cracking and spalling is not

a problem with iridium-coated rhenium as in silicide-coated niobium. Use of the
new material system enables an 800 K increase in thruster operating temperature

from around 1700 K for niobium to 2500 K for rhenium. Specific impulse of

iridium-coated rhenium rockets is nominally 20 seconds higher than comparable

niobium rockets in the 22 N class and nominally 10 seconds higher in the 440 N

class.

INTRODUCTION

Liquid rockets are used for a variety of functions on many commercial, military

and NASA space systems. Major roles include launch, orbit transfer, apogee,

perigee, north-south stationkeeping, orbit control, drag makeup, and logistics

(delivery and return). In many cases, it is the onboard propulsion which exerts
a major influence on the characteristics of the space systems and their overall

mission performance. I For example, several of the commercial geosynchronous

(GEO) communication satellites have injected propulsion and payload mass
fractions with onboard propulsion constituting greater than 50% of the injected

mass, as shown in Figure I. In another example, onboard propulsion system mass

of the Space Transportation System Orbiter ranges from 13,000 kg to 18,000 kg,

depending on Orbiter mission, as shown in Figure 2.2 Technologies which advance

the state-of-the-art of onboard propulsion, therefore, offer major potential

mission leverage in terms of their impact on on-orbit payload mass and life.

The use of spacecraft onboard propulsion rather than an i_dependent propulsion

stage can also reduce cost and risk of the overall mission. _ Major cost savings

are achieved by eliminating the duplication of components and subsystems between

independent propulsion stages. Low thrust onboard propulsion allows near-Earth

deployment and checkout of spacecraft, operational flexibility during different
missions phases, and a fail-safe approach to orbit transfer. Low thrust transfer

has no great mission timeline impact in that it only increases the transfer time

from approximately 6-8 hours to 2-5 days, depending on the rocket used for the

transfer process. In a low-thrust ascent to GEO or some other high-energy orbit,

orbit transfer is accomplished by a sequence of typically 10 to 30 extended burns

centered on perigee, followed by a series of I to 3 apogee burns. Orbit transfer
risk is reduced," not by more reliable components in the low thrust process, but

by fewer components and fewer nonredundant, critical components.



This paper reviews a basic research program in small liquid rocket technology.
The materials technology which enables the fabrication of uncooled thrust
chambers is reviewed first, followed by small rocket test results using these
materials.

MATERIALS

Silicide-coated Niobium

Nearly every film and radiation cooled liquid rocket thrust chamber and exit

nozzle presently is fabricated from niobium (C-I03) with a fused silica coating

(R-512A or R-512E) for oxidation protection. The life of the coating is limited

by two modes of degradation. The first and most understood mode is the loss of

the coating due to diffusion and vaporization of the material. This mode can be

evaluated by available analytical techniques based on diffusion and vapor

pressure relationships. The second mode of degradation is the result of
differences in the coefficient of thermal expansion of the C-i03 base material

and the R-512 coating. The repeated cycling of the material system between room

temperature and elevated temperatureS(1400 -1900 K) results in coating cracking

and eventual spalling. In addition, the cracks formed result in substrate

oxidation and this can result in additional spalling of the coating and eventual

exposure of the C-I03 to the combustion gases.

No definitive analytical technique has been found which can predict the onset of

coating failure based on a combination of "time at elevated temperature" and
number of thermal cycles. The recommended life limits (time at elevated

temperature) used by several rocket manufacturers is given in Figure 3. These
data are based on torch tests of materials and qualification tests of rocket

engines conducted by these companies. Note a significant variability in

recommended life, but a general agreement that there is 10 to 15 hours of life

at 1640 K. One manufacturer also reports that life may be dependent on thruster
size.

For cyclic applications, manufacturer recommended life limits are expressed as
the number of full thermal cycles versus peak cycle temperature, as given in

Figure 4. These data indicate that for high engine temperature, this coating

cannot withstand many (100-1000) thermal cycles without failing. For mixed

steady state and pulse duty operation, manufacturers recommend addition of the

steady state and cyclic components of life. For example, using the most
conservative data, a thruster life is defined as operation at 1670 K For 3 hours

(50% of life) plus 500 cycles in pulse duty at 1470 K (50% of life).

Iridium-coated Rhenium

Rhenium coated with iridium for oxidation protection is the thrust chamber
material chosen for development under this program. _'_ This selection was made

following a literature and vendor survey of potential materials with capabilities

of operating at temperatures as high as 2470 K in an oxidizing rocket engine
environment.

Refractory metals, ceramics, composites, and carbon-carbon materials were

evaluated for substrate materials. Platinum group metals, Engle-Brewer compounds

and ceramics were considered for oxidation resistant coatings. Iridium-rhodium-

rhenium alloys and ceramic/metal (CERMET) alloys were considered as monolithic
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materials. Many candidate materials were available, but most had very little
information available about their fundamental properties of interest such as
strength, shock resistance, and oxidation resistance. In addition, somevery
promising materials required extensive development of their fabrication
technologies.

Rhenium(Re) was selected as the substr_e material because of its high melting
point (3400 K) excellent strength at high temperature and absence of a ductile-
to-brittle transition commonin other refractory metals. Iridium (Ir) was chosen
a_ the oxidation resistant coating for rhenium because of its adequate melting
temperature (2720 K), good oxidation resistance (3 orders of magnitude better
than Re), close coefficient of thermal expansion to rhenium, adherence to
rhenium, and ductility.

These materials were first fabricated for the Air Force Rocket Propulsion
Laboratory6'7 in the form of 3 mmdiameter tubes by the Chemical Vapor Deposition
(CVD) technique. Oxidation tests were performed by induction heating of the
samples in air to 2270 K for over 20 minutes. The iridium coating, however, was
porous and did not afford the requisite oxidation protection to the underlying
rhenium. Further development8 of the iridium CVDprocess has yielded uniform,
non-porous coatings that offered excellent oxidation protection to the rhenium.
Small 22 N rocket chamberswere fabricated to evaluate this material. They were
mated to a water cooled injector and fired with nitrogen
tetroxide/monomethy!hydrazine (N2_u/MMH)pr6peilants as a material demonstrator.
Over fifteen hours_'_ of operation and 2684 thermal cycles at temperatures around
2500 K were demonstrated without failure. A summaryof test time versus mixture
ratio is given in Table I. Following these tests, the measured throat diameter
was only about 0.01 mmlarger and chamberweight loss was less than 1%.

In order to understand the performance limits of Ir-coated Re thrusters, an
effort s'1° was undertaken at the Sandia Combustion Research Facility to measure
interdiffusion and oxidation kinetics of Ir-coated Re. Gas phase measurements
were obtained near the surface of heated samples in an_atmospheric pressure
air/H 2 flame by laser-induced fluorescence.' .... Hydroxyl radical (OH)
measurementssignificantly above equilibrium were measured for almost all test
conditions and no difference in profiles near iridium or platinum samples was
observed. This suggests that the OH concentrations near the surface are
determined primarily by a radical recombination process in the post-flame gases,
or else these surfaces have the samereactivities.

Surface reaction phenomenaon samples heated in a furnace were examined using
Ramanspectroscopy, Auger spectroscopy, and x-ray diffraction. I°'12'13 Analysis
of samples shows that Ir is attacked and etched by oxygen by the formation and
desorption of IrO2. An Ir recession rate of 0.15 micrometers/hr was measured4
by thermogravimetric analysis (TGA) at 1810 K in Ar+O.5f_2 at 190 Pa. Ir-Re
interdiffusion wasexaminedby annealing Ir-coated Resamples in a vacuumfurnace
at temperatures between1670 K and 2170 K. The samples were cross-sectioned and
polished and electron microprobe analysis was used to determine the distribution
of Re and Ir in these annealed coatings. Re was observed to diffuse
preferentially along grain boundaries into the Ir coating with very little
diffusion of Ir into the Re. Diffusion constants were obtained by a model of
diffusion into a semi-infinite mediumwhere the boundary was held at constant
concentration. Measureddiffusion constants are given in Figure 5. They have
an Arrhenius dependencewith an activation energy for diffusion of 1.23 eV. This



activation energy is well below that expected for bulk diffusion, suggesting that
grain boundary diffusion is the dominant diffusion mechanism.

Failure of the Ir-coated Rematerial system was therefore projected to occur by
diffusion of the Re through the Ir, followed by subsequent oxidation and removal
at the Ir surface. Thermogravimetric analysis _ (TGA) was used to measure the
oxidation rates of Ir and Ir-Re alloys. Rapid oxidation of specimens with
greater than 20 atomic percent Rewas observed. This suggests imminent failure
whenthe Reconcentration at the surface reaches 20 atomic percent. A life limit
model14 was then developed, as shown in Figure 6. The life model has functional

dependence on operating temperature, Ir-thickness and surface recession rate.

Efforts are underway 15 to develop enhancedoxidation protection for Ir coated Re

engines. Acombination thermal/diffusive barrier using oxide coatings was chosen

for development. The prime candidates are hafnia (Hf02), zirconia (Zr02), and

yttria (Y203).

Other Materials

Another material system of high interest is mixed hafnium carbide (HfC) and

tantalum carbide (TaC) ceramic composite reinforced with graphite fibers. HfC,

TaC, and graphite are among the highest melting point materials known (4200 K,
4150 K, and 3800 K, respectively). These temperatures exceed the flame

temperature of most propellants and could enable uncooled operation- of
hydrogen/oxygen rocket chambers. Mixed HfC/TaC coating on graphite fibers were

16
successfully formed and oxidized into protective oxide layers of HfO2/Ta2Os.

Some degree of stabilization of the HfO 2 was observed by the inclusion of the

TaROS. The melting point of HfO z (3110 K) limits the operating temperatures in
ox1(fizing environments. This temperature is well above the melting point of Ir,

however, some cooling of rocket chambers fabricated with these materials may be

required. Compositional variations of HfC/TaC are to be examined in order to

determine that which provides the most adherent oxide coatings.

THRUSTER RESULTS

Desiqn and Fabrication

The design and fabrication of rockets using Ir-coated Re materials requires

knowledge of materials properties and metallurgical joining technologies. Much

of the basic work on measurement of properties was conducted in the 1960's and
1970's. This work was reviewed, _'17 but sources were reported to have

considerable variability. The method of fabrication of the Re was one

uncertainty. A comparison of the high temperature creep and tensile properties

of rhenium fabricated by arc cast, CVD, and powder metallurgy was recently
conducted. TM The results of testing indicate that the creep-rupture properties

of CVD rhenium are similar to those of powder metallurgy rhenium. An

investigation of metallurgical joining techniques of rhenium to dissimilar
metals 4 produced furnace brazing with Palcusil 25 or Nioro (BAU-4) and a form of

electron beam (EB) welding called parent metal braze as suitable joining

techniques.

The high operating temperature of Ir-coated Re (2500 K) allows the elimination

of fuel film cooling and its associated combustion/performance losses in



thrusters. Small rockets require larger percentages of their fuel for cooling
and, therefore, benefit the most from this high temperature material technology.
Thruster design issues which arise from the use of these materials include
thermal managementof the injector-chamber interface and design for adequate
fatigue .strength during launch. Thermal managementpan be accomplished by the
use of fuel film coolant, mixture ratio control near the wall, or injector
regenerative cooling. Design for adequate fatigue life can be accomplished by
the use of lighter weight materials, such as silicide coated niobium, for nozzle
skirts where temperatures do not require rhenium and/or by providing adequate
throat thickness.

22 N Rocket

Results from performance and life testing of a 22 N rocket design with N2OJMMH

propellants were reported first. "''' The thruster was designed with a 150:1 area
ratio nozzle for the direct comparison of performance of the Ir-coated Re engine

with that of a flight qualified niobium engine of 690 kPa chamber pressure. Heat
transfer to the injector due to soakback from the Ir-coated Re chamber was

managed by using 30 to 40% fuel film cooling along with a patented staged
combustion device to mix the film with the core flow further downstream such that

the Ir-coated Re chamber runs essentiallyuncooled. This mixing of the film with

the core flow resulted in a significant increase in combustion efficiency with

no modification of the injector. A high emissivity dendritic rhenium surface on

the outside of the chamber enhanced radiation heat transfer from the chamber.

The measured vacuum specific impulse for this engine was 313 seconds at a mixture
ratio of 1.66. This is nominally 20 seconds higher than that obtained with the

comparable niobium chamber. During these tests, the maximum wall temperatures
were around 2200 K. The high emissivity external surface reduced observed

temperatures by about 250 degrees below those of the material demonstrator. Duty

cycle tests ranging from 10 to 90 percent on-time with each pulse being 0.050
seconds in duration were also conducted. Oyer 100,000 pulses were accumulated

on the chamber. Based on temperature rise data, duty cycles of about 60-70%

would have exceeded injector or valve temperature limits of 480 and 380 K,

respectively. A rocket test summary of the 1.77 hrs of operation is given as a
function of mixture ratio in Table II. inspection of the chamber after these

tests revealed an Ir coating failure at the throat. This failure occurred at a

sharp expansion in the flow (0.8 mm axial radius of curvature of the nozzle

contour). For comparison, the successful material demonstrator chamber had a

milder expansion with a 7.6 mm axial radius of curvature. Stress analyses
indicated that the combination of small radius of curvature and high axial

temperature gradient contributed to the coating failure.

A further series of tests was also conducted to determine thermal behavior with

an expanded operating envelope of chamber pressure from 590 to 1100 kPa, 320 K

propellants, and mixture ratios of 1.65 and 1.90. The more benign, low chamber

pressure, low duty cycle tests were successfully completed, but other tests led

to overheating of the injector/valves. Additional thermal design of this

thruster is, therefore, required for this operating envelope.

440 N Rocket

Following the successful material demonstration, the Jet Propulsion Laboratory

undertook to demonstrate a 440 N thruster .....on N2OJMMH propellants at a nominal

chamber pressure of 6900 kPa. Fuel regenerative cooling of the injector was
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employed to managethe soakback heat transfer and no high emissivity dendritic
surface was employed. A total firing time of 4.2 hours and 33 cycles were
accumulated on one of the chamberswith temperatures ranging from 2100 to 2200
K. A performance of 292 seconds wasmeasuredat a mixture ratio of 1.65 and an
area ratio of 22:1. This performance is about a 10.seconds higher than a similar
Nb engine. A summaryof these tests is given in Table Ill as a function of
mixture ratio. This fabrication required a significant scale up of the CVD
chamberfabrication technology and issues involving low deposition rates for the
iridium coating resulted in local blistering of the coating. A metallurgical
investigation of the coating revealed contamination sandwiched between the
multiple layers of iridium in the 50 micrometer thick coating.

22
A program was then undertaken to improve the CVD iridium deposition process.

The deposition rate was improved by taking advantage of natural convection flows
within the CVD chamber to deliver more precursor material to the surface of the

mandrel. In addition, a fluidized bed evaporator was developed to enable a

continuous feed of evaporated iridium precursor material. Continuous iridium

deposition at about 15_n/hr then enabled the elimination of the previously

experienced contamination in the scaled up CVD process by depositing the coating

in one continuous deposition run.

62 N Rocket

This improved CVD fabrication technology was first demonstrated on a 62 N chamber

with N2OJMMHprppellants at a nominal chamber pressure of 6900 kPa and a 75:1
area ratio. 5'_ This chamber was chosen to demonstrate that iridium-coated

rhenium chambers could be retrofited on existing Nb rockets without modification

of the injector. Soakback heat transfer to the injector was managed by the fuel

film cooling along with a patented staged combustion device to mix the film with

the core flow such that the Ir-coated Re chamber runs essentially uncooled. This

mixing of the film with the core flow resulted in a significant performance

increase with no modification of the injector. The high emissivity dendritic

rhenium coating was used to lower chamber temperatures. A total firing time of

600 sec and 263 cycles were accumulated on one of the chambers with no

degradation. Chamber temperatures ranged from 2050 to 2150 K. Measured specific

impulse was 305 seconds at a mixture ratio of 1.65. This compares to 286 seconds

for the flight qualified Nb design yielding a 19 second performance increase.

Thruster performance was successfully demonstrated over the flight qualification

inlet pressure, mixture ratio operating envelope. When comparing the Re chamber
with a Nb chamber, post test chamber discoloration streaks suggest more complete

combustion and less plume contamination with the Re chamber. The final hurdle

for this chamber was an acceptance test to determine whether the material and

design had the requisite fatigue properties to survive the launch vibration

environment. This test was successfully passed although analyses indicate the

design is marginal. Increasing the material thickness at the throat alleviates

this concern and a demonstration of this fabrication technology is needed.

440 and 550 N Rockets

The improved CVD fabrication technology was also demonstrated on 440 N and 55(_
N chambers. Performance and durability tests are underway on the 440 N enqine _

20,21"
with N2Ou/MMH propellants. Performance achieved on the prior program was
duplicated at an area ratio of 22:1. Also, performance data was obtained on a

high area ratio (286:1) flight type engine. Preliminary evaluation of the data
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indicates a nominal vacuum specific impulse of 319 seconds, with data ranging
from 318 to 321 seconds. An effort is underway to prequalify this flight type

thruster to a planetary program operating envelope. Analyses indicate, however,

that significantly thicker throats are required to survive the launch vibration
environment.

Preliminary test results from a second thruster manufacturer with the 550 N

chamber on N2OJN2H 4 propellants were obtained. 25 Vacuum specific impulses in the
326 to 328 second range are estimated at an area ratio of 204:1. A combustion

efficiency in excess of 98% theoretical was achieved with rhenium chamber

temperatures below 1900 K. Further injector optimization is projected to yield

a specific impulse of 330 seconds.

SUMMARY

Recommended life limits of silicide-coated Nb thrust chambers used by several
manufacturers of state-of-the-art thrusters were given as a function of operating

temperature and duty cycle. Significant variability in recommended life was
noted along with a general agreement that there was about 10 to 15 hours of life

at 1640 K. For cyclic applications, a limit of between 100 and 1000 thermal

cycles was indicated, dependent on operating temperature. A materials technology

program to fabricate and substitute iridium-coated rhenium thrust chambers was
reviewed. These new materials enable the fabrication ofuncooled thrust chambers

with significant performance increases due to the elimination of fuel film

cooling. Over fifteen hours of operation and 2684 cycles at operating

temperatures of 2500 K were demonstrated on these materials without failure with

N2HJMMH propellants. The life limiting process in iridium-coated rhenium
material was evaluated from fundamental measurements. The process of failure is

described as the diffusion of rhenium through the iridium coating until an alloy

composition in excess of 20% Re occurs on the surface which results in

catastrophic material loss to oxidation.

The design and fabrication of rockets using iridium-coated rhenium materials was
outlined and the results of four different rocket test programs with these

materials were reviewed. Rockets in the thrust classes of 22 N, 62 N, 440 N, and

550 N were tested by two different contractors with excellent results.
Performance of iridium-coated rhenium rockets is nominally 20 seconds higher than

comparable niobium rockets in the 22 N class and nominally 10 seconds higher in
the 440 N class. Design and fabrication of chambers to survive the launch

vibration environment is underway.

I •
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MR

1.45
1.50
I .55
1.60

1.65

1.70

1.75

1.80

I.85

1.90

2.00

2.05

Total s

Max Temp

(KI

2478

2511

2496

2513

2519

2519

No of Thermal

Cycles

"2

3

2

2

581

571

1

503

2

551

366

100

2684

Duration

(sec I

61

70

10

2705

31457

15856

2

2210

10

1105

738

200

54430

Table I 22 N Iridium Coated Rhenium Material

Demonstrator Rocket Test Summary

MR

1.59

1.61

1.62

1.63

1.64

1.64

1.64

1.64

I .64

1.64

1.64

1.64

1.64

1.65

1.66
i.68

Total s

Max Temp

(K)

2209

2156

2200

2229

2214

1689

1700

1906

1972

2047

2094

2128

2153

2237

2246

2259

Max

Specific

Impulse

(sec)

307

304

301

310

314

311

313

318

Duty
Cycle

Steady

Steady

Steady

Steady
10%

20%

40%

50%

60%

7O%

80%

90%

Steady

Steady

Steady

Steady

No of
Pulses

]

I

I

I

2

1000

86,800
1800

1400

2855

1706

2240

25OO

I

I

2

100,311

Duration

(sec)

3O0

5

9O

350

95

5O

4340

9O

7O

143

85

112

125

90

319

110

6374

TABLE II 22 N Iridium-Coated Rhenium Rocket Test Summary

at 150:1 Area Ratio
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MR

1.54
] .60
1.62
1.63
1.64
1.65
1.66
1.67
1.69

Total s

Max Temp

(K)

2100

2123

2094
2222

2169

2144

2144

Max Vacuum
Specific

Impulse

{sec)
290
289
292
291
292
292
293
293
294

No of

Cycles

]

3

3

2

4

8

5

6

I

33

Duration

(sec)

15

609

1927

1310

2950

4102

3000

1052

35

15,000

TABLE Ill 440 N Iridium-Coated Rhenium Rocket Test Summary
at 22:1 Area Ratio

MR

1.41

1.54

1.54

1.57

1.59

1.60

1.62
1.63

1.63

1.64

1.64

1.65

1.66

1.68

1.82

Totals

Max Temp

(K)

2056

2116

2113

2117

2128

2194

2186

2155

2182

2159

Max

Vacuum

Specific

Impulse

{sec)
30O
3OO

306
303
305

301

306

305

305

305

303

Duty

Cycle

Steady

Steady
10%

Steady

Steady

Steady

Steady

Steady
10%

Steady
10%

Steady

Steady

Steady

Steady

No of

Pulses

I

I

8O

3

2

I

I

2

8O

7

8O

]

2

I

I

263

Duration

(sec)

20

15

8

41

25

20

5

15
8

280

8

10

115

10

20

600

TABLE IV 62 N Iridium-Coated Rhenium Rocket Test Summary

at 75:1 Area Ratio
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